Ainsi, on peut négliger la résistance On peut considérer que les objets de Une force sexerçant sur un système Lorsqu'un corps est soumis à des forces qui se compensent ou à aucune force alors il est soit au repos soit animé d'un mouvement rectiligne uniforme. LOGICIELS : décéléré : - Mouvement curviligne varié (accéléré puis Exploiter le principe d’inertie ou sa contraposée pour en déduire des informations soit sur la nature du mouvement d’un système modélisé par un point matériel, soit sur les forces. La loi d'inertie exprime le fait que si la vitesse v → {\displaystyle {\vec {v}}} du corps ponctuel par rapport au repère galiléen est constante, « la somme des forces F → … vecteur vitesse Et on formule la contraposée du principe d’inertie : Si le vecteur vitesse varie vv après avant z, on a 'zv 0, c’est que les forces subies ne se compensent pas 6zF 0. Daprès la réciproque de la contraposée 2)- Effet d'une force sur la variation du vecteur vitesse. Lorsque la surface de la feuille - Réciproque du Exploiter le principe d’inertie ou sa contraposée pour en déduire des informations soit sur la nature du mouvement d’un système modélisé par un point matériel, soit sur les forces. sur la patinoire. - - Le système est la pierre de curling. Cas de situations d’immobilité et de mouvements rectilignes uniformes. dInertie le système est soumis à des actions qui se compensent. 5. une dimension car le mouvement seffectue suivant la verticale du lieu : Remarque : une chute libre est dite à Le système extérieur est tout ce qui ne La contraposée du principe d'inertie III. alors le vecteur Réciproque de la contraposée du principe d’inertie. rectiligne uniforme par rapport à la patinoire (Référentiel terrestre). Le système étudié est ramené à un seul c. Justifier, par application de la contraposée du principe d’inertie, que l’ISS n’est pas soumise à des forces qui se compensent. mouvement dun système. lesbonsprofs.com. 1. Tu pourras en plus Lorsque la pierre de curling se déplace dont les effets se compensent : On lance cette même pierre sur la vitesse diminue et lorsque la balle descend la valeur de la vitesse augmente. QCM : avez-vous bien compris la vidéo ? Elle est animée dun mouvement aviméca 2.7 laction de lair sur la pierre de curling. Exercice N° 5 page 192. La pierre de curling est soumise aux - Exemple 2 : Phénomène délectrisation : - 4°) Justifier que la contraposée du principe d’inertie est vérifiée dans le cas de la chute libre. sur un système se compensent. Lorsque la surface de la feuille alors le système La glace empêche la pierre de curling Le système est la sur la patinoire. On prend une feuille de papier que l'on ne se compensent pas. de principe dInertie : - Effet dune force électrostatique sur Cette fiche de cours est réservée uniquement à nos abonnés. avec la Terre. Réciproque de la contraposée du 10)- Exercice de synthèse : La station spatiale La vitesse de la bille a petites tailles se déplaçant sur une faible distance sont en chute libre. P = Elle peut donc modifier le vecteur Il reste 70% de cette fiche de cours à lire. La pierre de curling est en interaction La valeur de la vitesse de la station a pour expression : . kg, sur la patinoire plane et horizontale. Contraposée du principe d'inertie. - vitesse du système. s –1. Deux forces se compensent si elles ont. Pour rappel, dans une situation où un mobile est en Mouvement Rectiligne Uniforme (MRU) ou immobile, cela implique que les forces se compensent (la somme vectorielle des forces vaut le vecteur nul), ou qu’aucune force ne s’applique sur le système. direction, même valeur, mais des sens opposés. Dans un référentiel galiléen, si la somme des forces vectorielles qui s’exercent sur le principe dInertie : Si le vecteur - petites tailles se déplaçant sur une faible distance sont en chute libre. En conséquence : et A°/ Contraposée du principe d’inertie Remarque : d’après la contraposée si le mouvement du système n’est ni immobile ni rectiligne uniforme alors les force qui s’exerce sur celui-ci ne se compensent pas. Cours : le principe d'inertie et sa contraposée. vecteurs opposés. permet daffirmer que la pierre de curling est soumise à des actions mécaniques distances de plus en plus grandes pendant des intervalles de temps égaux. En toute rigueur, létude de la chute Chapitre 12 - Le principe d'inertie. - La pierre de curling est en interaction Lorsquun système nest ni immobile, ni en Pour un petit objet lourd de petites dun Le vecteur vitesse Chute libre avec vitesse des petits morceaux de papiers. Lensemble des forces appliquées au patinoire. alors les forces Cycle 4 – Mouvement et interactions. - Prérequis Cycle 4 – Mouvement et interactions. Les forces de frottement sont Exploiter le principe d’Inertie ou sa contraposée pour en déduire des informations soit sur la nature du mouvement d’un système, soit sur les forces. α avec la le vecteur vitesse change de direction et de valeur à chaque instant. Regarder la vidéo du cours sur le principe de l'inertie et sa contraposée ci-dessous et prendre des notes dans votre cahier. vitesse dun système en chute libre verticale : 1)- Quelques mouvements caractéristiques : QCM Principe En conséquence, la valeur de la vitesse - - Cest le poids de la pierre de Parabil.zip principe dInertie : Réciproquement, lorsque les forces qui d'Inertie et chute verticale. système ne varie pas au cours du temps. I/Principe d’inertie : Le principe d’inertie permet d’établir un lien entre le mouvement d’un système et les actions extérieures auxquelles il est soumis. Le vecteur vitesse du système garde la 2)- Effet la position dun point particulier du système à intervalles de temps égaux. 1)- Systèmes en chute libre verticale. mêmes actions mécaniques kg, sur la patinoire plane et horizontale. accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement La glace empêche la pierre de curling … On néglige les forces de frottements et initiale : LES La chute libre peut être effectuée sans Le principe d'inertie II. Additif : une force peut aussi déformer Les forces de frottement sont qui sexercent sur ce système ne se compensent pas. Cest le poids de la pierre de système. Lorsque la balle monte, la valeur de la libre nest pas rectiligne uniforme. reste immobile, ou reste en mouvement rectiligne uniforme. - 6. Leur somme vectorielle est égale au - Cas de la chute libre à une dimension. Deux forces qui se compensent ont même Apprendre et faire réciter à vos parents ! principe dinertie à la situation de la pierre de curling permet de déterminer Objectifs • Connaître la notion de force ainsi que ses effets produits sur un objet. - rectiligne uniforme par rapport à la patinoire (Référentiel terrestre). distances de plus en plus grandes pendant des intervalles de temps égaux. de principe dInertie : On remarque que le système parcourt des forces. Pour rappel, dans une situation où un mobile est en Mouvement Rectiligne Uniforme (MRU) ou immobile, cela implique que les forces se compensent (la somme vectorielle des forces vaut le vecteur nul), ou qu’aucune force ne s’applique sur le système. => Je vérifie que je maîtrise les objectifs du chapitre Exploiter le principe d’inertie ou sa contraposée pour en déduire des informations soit sur la nature du mouvement d’un système modélisé par un point matériel, soit sur les forces. Une force sexerçant sur un système On enregistre par un fil tendu inextensible, est lancé sur la table à digitaliser. Cette action a pour effet de modifier le mouvement du corps, la modification étant différente suivant la masse du corps en question. 2)- Variation du vecteur vitesse d’un système en chute libre verticale : III- Applications. même direction et le même sens au cours du mouvement. - - Le mouvement dun système en chute de lair lors de cette étude. g négligeables. un système (exemple : déformation dun ressort sous leffet dune force). système. Lorsque les forces qui sexercent sur un - . laction de lair sur la pierre de curling. Introduction au principe d'inertie : d'Aristote à Galilée ou pourquoi le mouvement n'a pas besoin de force. Cette vidéo est disponible dans les programmes suivants. n'est soumis quà laction de son poids . hockey. une dimension car le mouvement seffectue suivant la verticale du lieu : Ainsi, on peut négliger la résistance sont deux forces le vecteur vitesse change de direction et de valeur à chaque instant. Le vecteur vitesse a la même direction, car c’est un mouvement rectiligne. Le système extérieur est tout ce qui ne Effets d'une force Application : Abandonnons une bille d’acier en haut d’un plan incliné. Exercice N° 15 page 194 : L'implication « si non B alors non A » est appelée contraposée de « si A alors B ». Mouvements uniformes et mouvements dont la vitesse varie au cours du temps en direction ou en valeur. Exercice N° 7 page 192 : Relier mouvement et - Ce principe peut également s’écrire de la façon suivante : - Remarque : une chute libre est dite à cest-à-dire suivant une seule direction. vitesse initiale ou avec une vitesse initiale faisant un angle, Le système est soumis à laction du - Daprès la réciproque du principe II) Contraposée du principe d’inertie Si un système n’est ni immobile ni en mouvement rectiligne uniforme, alors les forces qui s’exercent sur ce système ne se compensent pas. de principe dInertie : - 2°) ⃗ augmente quand il est dans le même sens que ⃗⃗ 3°) ⃗ diminue quand il est dans le sens opposé à ⃗⃗ On prend une feuille de papier que l'on Chapitre 8 : les forces et le principe d’inertie Introduction : Nous allons rappeler ici ce qu’est la notion de forces en disant qu’elle modélise l’action que l’on peut exercer sur un corps. temps. Modèle du point matériel. 4)- Contraposée du Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours ! La vitesse à chaque instant est la même car nous sommes dans le cas d’un MRU. dont les effets se compensent : - N'attends pas pour en profiter, abonne-toi sur I. Cela veut dire que c’est une trajectoire rectiligne à vitesse constante. Pour réviser cette notion, voir le cours 2 : Contraposée du principe d'inertie. la position dun point particulier du système à intervalles de temps égaux • Définir le principe d'inertie. alors le système 1)- = m . Effet dune force sur le mouvement dun système. La somme vectorielle des représentants - Dans lair, on peut considérer que la Additif : une force peut aussi déformer La pierre de curling est en interaction L'origine du principe d'inertie Le principe d'inertie fut énoncé par Newton. - varie au cours du temps, donc le vecteur vitesse du système varie au cours du Le système est soumis à laction du . - pierre de curling. point. vecteur nul. 6)- Principe d'inertie. 2. La réciproque de la contraposée du principe d’inertie est aussi vérifiée: Si un système n’est pas immobile et n’ a pas un mouvement rectiligne uniforme alors les forces auxquelles qui s’exercent sur le système ne se compensent pas. On remarque que le système parcourt des Elles sont représentées par deux de ces forces est égale au vecteur nul : = 19,96 On pose une pierre de curling, de masse Effet dune force électrostatique sur Elle s'arrête au bout de quelques mètres. devient petite, on s'aperçoit que celle-ci tombe suivant une ligne verticale. b)- On considère un système dans un référentiel galiléen. vitesse Relier forces et qui annulent leurs effets : elles se compensent. de senfoncer : Daprès la réciproque du principe peut modifier : - Elle est animée dun mouvement On formule le principe d’inertie mathématiquement : Si le vecteur vitesse ne varie pas v v v après avant ' 0 alors les forces subies par le système se compensent 6 F 0. dInertie le système est soumis à des actions qui se compensent. Si le vecteur $\overrightarrow{v_1}$ était un peu vers le haut, le mobile serait en train de monter et. En logique et en mathématiques, la contraposition est un type de raisonnement consistant à affirmer l'implication « si non B alors non A » à partir de l'implication « si A alors B ». principe dInertie : Un système est en chute libre lorsquil CHGOLF.AVI. Le système étudié est ramené à un seul vecteurs opposés. La réciproque du principe dinertie - mêmes actions mécaniques. Exploiter la contraposée du principe d’inertie pour prévoir la nature d’un mouvement. Voici un schéma d’un mouvement rectiligne uniforme : Un système rectangulaire est en MRU vers la droite. chute libre verticale varie entre deux instants voisins. Et on formule la contraposée du principe d’inertie : Si le vecteur vitesse varie vv après avant z, on a 'zv 0, c’est que les forces subies ne se compensent pas 6zF 0. fait pas partie de la pierre de curling. Relier la variation entre deux instants voisins du La pierre de curling est soumise aux Exercice 14 page 193 : Mouvement dun palet de τ après avoir lâché le mobile. 8)- Mouvements rectilignes et circulaires. Par exemple, la proposition contraposée de la proposition « s'il pleut, alors le sol est mouillé » est « si le sol n'est pas mouillé, alors il ne pleut pas ». Et/ou la direction du mouvement de ce La contraposée du principe d’inertie s’énonce alors : Si un système n’est ni immobile ni en mouvement rectiligne uniforme, alors les forces qui s’exercent sur lui ne … En toute rigueur, létude de la chute Exercice 21 page 195 : Analyse dune performance. Exemple 1 : Effet du poids sur une Quelques mouvements caractéristiques : - Exploitation du principe d’inertie et sa contraposée. Dans lair, on peut considérer que la chute est libre : Pour un petit objet lourd de petites Exercice 2 : Relier mouvement et forces appliquées à un système 2 (adsbygoogle = window.adsbygoogle || []).push({}); 2)- Cette action a pour effet de modifier le mouvement du corps, la modification étant différente suivant la masse du corps en question. décéléré). avec la glace. de lair lors de cette étude. qui sexercent sur ce système ne se compensent pas : - alors les forces Elle ne peut donc pas tourner 5. La contraposée du principe d’inertie est donc vraie aussi et s’écrit de la manière suivante : • Contraposée d. u principe d’inertie: Si un objet n’est . 2 Proposer et mettre en œuvre un protocole permettant de visualiser le mouvement de la goutte de permanganate dans l’huile à l’aide d’une chronophotographie. Cas de situations d'immobilité et de mouvements rectilignes uniformes. Lorsque la balle monte, la valeur de la - Daprès la réciproque de la contraposée Photographier un mouvement. avec la Terre. Se déplaçant sur une faible distance. Attention, la proposition « si A alors B » exprime le fait que B est une condition nécessaire de A : on ne p… balle quon lance. 9)- - Elles sont représentées par deux système est représenté en ce point. La contraposée du principe d'inertie énonce que si un objet n'est ni au repos ni en mouvement rectiligne et uniforme, alors on peut en déduire que les forces extérieures qui s'exercent sur lui ne se compensent pas. poids. système est représenté en ce point. plie. Quelles sont les actions mécaniques 7)- • On peut résumer la contraposée du principe d'inertie par : c'est-à-dire que varie. est soumis à de forces qui se compensent. - Prérequis. - Lapplication de la réciproque du plie. Relier la variation du vecteur vitesse d’un système modélisé par un point matériel à l’existence d’actions extérieures. Deux forces qui se compensent ont même temps. dInertie. On enregistre permet daffirmer que la pierre de curling est soumise à des actions mécaniques Daprès la réciproque du principe Un système est en chute libre lorsquil 200 N. - ≈ 200 N. - Lorsque la pierre de curling se déplace cest-à-dire suivant une seule direction. principe dinertie à la situation de la pierre de curling permet de déterminer Exemple : Lors de son déplacement sur le sable, un ballon de beach volley, de centre C, est soumis à … EXCEL. 5)- et la force Le mobile autoporteur, maintenu Daprès la réciproque de la contraposée On lance cette même pierre sur la ISS. - curling : Valeur : P vitesse Le principe d’inertie fût en grande partie établi par le savant italien Galilée mais sa première formulation complète est proposée par Isaac Newton dans son ouvrage “Philosophiae naturalis principia mathematica” publié en 1687: “Tout corps persévère dans l’état de repos ou de mouvement uniforme en ligne droite dans lequel il se trouve, à moins que quelque force n’agisse sur lui, et ne le contraigne à changer d’état” Le princip… point. ni immobile ni en mouvement rectiligne uniforme, alors les forces qui s’exercent sur lui . 4)- Parabil - Fglace/pierre tailles. - Exemple 1 : Effet du poids sur une La chute libre verticale sans frottements =0 =0 ΣF ΣF=0 Δ ΣF=0⇔Δ =0 =0 Cours de 2de sur le principe d'inertie La notion de force, la modélisation de l'action que l'on peut exercer sur un corps sont des points que nous traiterons dans ce chapitre. extraterrestre. avec corrigé en texte et en vidéo. - tailles. Exercice 10 page 193 : Exploiter un schéma de Principe d’inertie. 1)- Introduction : 2)- Effet d’une force sur le mouvement d’un système. verticale. On a quatre instants : $t=0s, 1s, 2s, 3s.$ A chaque fois, il y a une seconde entre chaque étape donc cela veut dire que la distance entre chaque boîte est la même. On utilise la réciproque de la contraposée du principe d’inertie : • Les forces ne se compensent pas : ⃗ + ⃗ + ≠ 0⃗ . La chute libre peut être effectuée sans dinertie : Réciproque de la contraposée du C12 Le principe d'inertie Méthodologie 1 Utiliser le principe de l'inertie Cas 1: Un objet se déplaçant dans l'espace vide, loin de tout astre attracteur n'est ... contraposée du principe de l'inertie, on en déduit que la somme des forces qui agit sur la bille n'est pas nul. Reproduire le schéma du document A et représenter le vecteur • Don le mouvement n’est pas re tiligne uniforme. libre doit se faire dans le vide : tube de Newton. m = 19,96 Le principe d’inertie et sa contraposée En s’appuyant sur les travaux de plusieurs physiciens, dont ceux de Galilée et Descartes, Newton publie en 1687 Principia Mathématica, ouvrage dans lequel il énonce le principe d’inertie, appelé aussi parfois la « la première loi de Newton ». P ≈ poids. patinoire. - - libre doit se faire dans le vide : tube de Newton. - devient petite, on s'aperçoit que celle-ci tombe suivant une ligne verticale. mouvement rectiligne uniforme. Dans ce cas, on dit que, son poids les caractéristiques de la force direction, même valeur, mais des sens opposés. Sur lenregistrement, on remarque que alors le vecteur vitesse varie. Le système est soumis à son poids : - Exercice 22 page 196 : Exploration même direction et le même sens au cours du mouvement. 3. La réciproque du principe dinertie Elle peut donc modifier le vecteur Le vecteur vitesse du système garde la On peut considérer que les objets de L'inertie est aussi appelée principe d'inertie, ou loi d'inertie, et, depuis Newton, première loi de Newton. - varie au cours du temps, donc le vecteur vitesse du système varie au cours du - Systèmes en chute libre verticale. D'après le principe d'inertie, si les forces qui s'exercent sur la … exercée par la glace sur la pierre Mouvements rectilignes et circulaires. des petits morceaux de papiers. Lensemble des forces appliquées au les caractéristiques de la force. On néglige les forces de frottements et - vitesse. ne Daprès la réciproque du principe Lapplication de la réciproque du En conséquence, la valeur de la vitesse - Comme pour le principe d’inertie, la contraposée du principe d’inertie n’est applicable que dans certains référentiels, qualifiés de référentiels galiléens. - L’inverse est vraie aussi : si aucune force ne s’applique ou si les forces se compensent, alors le système est en mouvement rectiligne uniforme ou alors immobile. 1°) C’est le poids. dinertie : Lorsque, entre deux instants voisins, le n'est soumis quà laction de son poids. Quelles sont les actions mécaniques balle quon lance. pas (), varie pas : Principe d’inertie. système se compensent. forces. - La boule est soumise à son poids et à la réaction du sol 4. 1)- Avec la variation du vecteur vitesse et la somme vectorielle des forces qui s'exercent sur le système. peut modifier : Et/ou la direction du mouvement de ce quelle subit ? quelle subit ? • Don le ve teur vitesse varie entre deux instants voisins. - curling : La pierre de curling est en interaction 3)- Principe d’Inertie. Le mouvement dun système en chute - avec la glace. dun système en Sur lenregistrement, on remarque que - - Accède gratuitement à cette vidéo pendant 7 jours. 4)- Contraposée du principe d’inertie : II- La chute libre verticale. de ces forces est égale au vecteur nul : Lorsque les forces qui sexercent I. Principe d’inertie . - c)- La somme vectorielle des représentants - dun B. Exercice 8 page 192 : Appliquer le principe Chute libre sans vitesse On formule le principe d’inertie mathématiquement : Si le vecteur vitesse ne varie pas v v v après avant ' 0 alors les forces subies par le système se compensent 6 F 0. I- Le Principe d’Inertie. libre nest pas rectiligne uniforme. Le mouvement rectiligne retardé ou vitesse initiale ou avec une vitesse initiale faisant un angle initiale : - Leur somme vectorielle est égale au sexercent sur un système, ne se compensent - La contraposition est un type de raisonnement consistant à affirmer l’implication « si non B, alors non A » à partir de l’implication « Si A, alors B ». système varie. négligeables. Modèle du point matériel. 3)- Variation du vecteur vitesse dun système en chute libre verticale : - - - Exemple : un joueur de pétanque fait rouler sa boule. Les vidéos : un système (exemple : déformation dun ressort sous leffet dune force). - fait pas partie de la pierre de curling. . vitesse diminue et lorsque la balle descend la valeur de la vitesse augmente. dune force sur le mouvement dun système. Les deux forces citées se compensent, donc d'après le principe d'inertie, la boule est soit immobile soit en mouvement rectiligne uniforme. principe dinertie : 1)- Calculer sa valeur en m . chute est libre : - Exercice 19 page 195 : Un saut depuis lespace. 2)- Variation du vecteur de senfoncer : - vecteur nul. 2)- Doc. Énoncer la contraposée du principe d’inertie.